A Find the missing numerator or denominator.				\# Correct
1	$\frac{1}{2}=\frac{-}{4}$	23	$\frac{1}{3}=\frac{12}{12}$	
2	$\frac{1}{5}=\frac{2}{2}$	24	$\frac{2}{3}=\frac{}{12}$	
3	$\frac{2}{5}=\frac{-}{10}$	25	$\frac{8}{12}=\frac{}{3}$	
4	$\frac{3}{5}=\frac{-}{10}$	26	$\frac{12}{16}=\frac{3}{}$	
5	$\frac{4}{5}=\frac{-}{10}$	27	$\frac{3}{5}=\frac{-}{25}$	
6	$\frac{1}{3}=\frac{2}{}$	28	$\frac{4}{5}=\frac{28}{}$	
7	$\frac{2}{3}=-\frac{1}{6}$	29	$\frac{18}{24}=\frac{3}{}$	
8	$\frac{1}{3}=\frac{3}{}$	30	$\frac{24}{30}=\frac{}{5}$	
9	$\frac{2}{3}=\frac{-}{9}$	31	$\frac{5}{6}=\frac{35}{}$	
10	$\frac{1}{4}=\frac{-}{8}$	32	$\frac{56}{63}=\frac{}{9}$	
11	$\frac{3}{4}=\frac{-}{8}$	33	$\frac{64}{72}=\frac{8}{}$	
12	$\frac{1}{4}=\frac{3}{}$	34	$\frac{5}{8}=\frac{-}{64}$	
13	$\frac{3}{4}=\frac{9}{}$	35	$\frac{5}{6}=\frac{45}{}$	
14	$\frac{2}{4}=-\frac{1}{2}$	36	$\frac{45}{81}=\frac{}{9}$	
15	$\frac{2}{6}=\frac{1}{-}$	37	$\frac{6}{7}=\frac{48}{}$	
16	$\frac{2}{10}=\frac{1}{}$	38	$\frac{36}{81}=\frac{}{9}$	
17	$\frac{4}{10}=\frac{-}{5}$	39	$\frac{8}{56}=\frac{1}{}$	
18	$\frac{8}{10}=\frac{-}{5}$	40	$\frac{35}{63}=\frac{5}{}$	
19	$\frac{3}{9}=-\frac{1}{3}$	41	$\frac{1}{6}=\frac{12}{}$	
20	$\frac{6}{9}=\frac{-}{3}$	42	$\frac{3}{7}=\frac{36}{}$	
21	$\frac{3}{12}=\frac{1}{}$	43	$\frac{48}{60}=\frac{4}{}$	
22	$\frac{9}{12}=\frac{}{4}$	44	$\frac{72}{84}=\frac{7}{7}$	

© Bill Davidson

Find the missing numerator or denominator.				\# Correct
1	$\frac{1}{5}=\frac{2}{2}$	23	$\frac{1}{3}=\frac{4}{}$	
2	$\frac{2}{5}=\frac{}{10}$	24	$\frac{2}{3}=\frac{8}{\square}$	
3	$\frac{3}{5}=\frac{-}{10}$	25	$\frac{8}{12}=\frac{2}{}$	
4	$\frac{4}{5}=\frac{}{10}$	26	$\frac{12}{16}=\frac{}{4}$	
5	$\frac{1}{2}=\frac{2}{2}$	27	$\frac{3}{5}=\frac{15}{}$	
6	$\frac{1}{3}=\frac{-}{6}$	28	$\frac{4}{5}=\frac{}{35}$	
7	$\frac{2}{3}=\frac{4}{}$	29	$\frac{18}{24}=\frac{}{4}$	
8	$\frac{1}{3}=\frac{}{9}$	30	$\frac{24}{30}=\frac{4}{}$	
9	$\frac{2}{3}=\frac{6}{}$	31	$\frac{5}{6}=\frac{}{42}$	
10	$\frac{1}{4}=\frac{2}{2}$	32	$\frac{56}{63}=\frac{8}{}$	
11	$\frac{3}{4}=\frac{6}{}$	33	$\frac{64}{72}=\frac{}{9}$	
12	$\frac{1}{4}=\frac{-}{12}$	34	$\frac{5}{8}=\frac{40}{}$	
13	$\frac{3}{4}=\frac{-1}{12}$	35	$\frac{5}{6}=\frac{-}{54}$	
14	$\frac{2}{4}=\frac{1}{}$	36	$\frac{45}{81}=\frac{5}{}$	
15	$\frac{2}{6}=\frac{-}{3}$	37	$\frac{6}{7}=\frac{}{56}$	
16	$\frac{2}{10}=\frac{}{5}$	38	$\frac{36}{81}=\frac{4}{}$	
17	$\frac{4}{10}=\frac{2}{}$	39	$\frac{8}{56}=\frac{7}{7}$	
18	$\frac{8}{10}=\frac{4}{}$	40	$\frac{35}{63}=-\frac{}{9}$	
19	$\frac{3}{9}=\frac{1}{-}$	41	$\frac{1}{6}=\frac{}{72}$	
20	$\frac{6}{9}=\frac{2}{-}$	42	$\frac{3}{7}=\frac{}{84}$	
21	$\frac{1}{4}=\frac{-}{12}$	43	$\frac{48}{60}=\frac{}{5}$	
22	$\frac{9}{12}=\frac{3}{}$	44	$\frac{72}{84}=\frac{6}{}$	

Name \qquad Date \qquad

1) Show each expression on a number line. Solve.
a) $\frac{2}{5}+\frac{1}{5}$
b) $\frac{1}{3}+\frac{1}{3}+\frac{1}{3}$
c) $\frac{3}{10}+\frac{3}{10}+\frac{3}{10}$
d) $2 \times \frac{3}{4}+\frac{1}{4}$
2) Express each fraction as the sum of two or three equal fractional parts. Rewrite each as a multiplication equation. Show letter a) on a number line.
a) $\frac{6}{7}$
b) $\frac{9}{2}$
c) $\frac{12}{10}$
d) $\frac{27}{5}$
3) Express each of the following as the sum of a whole number and a fraction. Show c) and d) on number lines.
a) $\frac{9}{7}$
b) $\frac{9}{2}$
c) $\frac{32}{7}$
d) $\frac{24}{9}$
4) Marisela cut four equivalent lengths of ribbon. Each was 5 eighths of a yard long. How many yards of fabric did she cut? Express your answer as the sum of a whole number and the remaining fractional units. Draw a number line to represent the problem.

Name \qquad Date \qquad

1) Show each expression on a number line. Solve.
a) $\frac{5}{5}+\frac{2}{5}$
b) $\frac{6}{3}+\frac{2}{3}$
2) Express each fraction as the sum of two or three equal fractional parts. Rewrite each as a multiplication equation. Show letter b) on a number line.
a) $\frac{6}{9}$
b) $\frac{15}{4}$

Name \qquad Date \qquad

1) Show each expression on a number line. Solve.
a) $\frac{4}{9}+\frac{1}{9}$
b) $\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}$
c) $\frac{2}{7}+\frac{2}{7}+\frac{2}{7}$
d) $2 \times \frac{3}{5}+\frac{1}{5}$
2) Express each fraction as the sum of two or three equal fractional parts. Rewrite each as a multiplication equation. Show letter a on a number line.
a) $\frac{6}{11}$
b) $\frac{9}{4}$
c) $\frac{12}{8}$
d) $\frac{27}{10}$
3) Express each of the following as the sum of a whole number and a fraction. Show c) and d) on number lines.
a) $\frac{9}{5}$
b) $\frac{7}{2}$
c) $\frac{25}{7}$
d) $\frac{21}{9}$
4) Natalie sawed five boards of equal length to make a stool. Each was 9 tenths of a meter long. How many meters of board did she saw? Express your answer as the sum of a whole number and the remaining fractional units. Draw a number line to represent the problem.
