\# Correct

Circle the smallest fraction.

1	$\frac{1}{2}$	$\frac{1}{4}$	23	$\frac{1}{4}$	$\frac{1}{8}$
2	$\frac{1}{2}$	$\frac{3}{4}$	24	$\frac{1}{4}$	$\frac{3}{8}$
3	$\frac{1}{2}$	$\frac{5}{8}$	25	$\frac{1}{4}$	$\frac{7}{12}$
4	$\frac{1}{2}$	$\frac{7}{8}$	26	$\frac{1}{4}$	$\frac{11}{12}$
5	$\frac{1}{2}$	$\frac{1}{10}$	27	$\frac{1}{6}$	$\frac{7}{12}$
6	$\frac{1}{2}$	$\frac{3}{10}$	28	$\frac{1}{6}$	$\frac{11}{12}$
7	$\frac{1}{2}$	$\frac{5}{12}$	29	$\frac{2}{3}$	$\frac{1}{6}$
8	$\frac{1}{2}$	$\frac{11}{12}$	30	$\frac{2}{3}$	$\frac{5}{6}$
9	$\frac{1}{2}$	$\frac{7}{10}$	31		$\frac{2}{9}$
10	$\frac{1}{5}$	$\frac{9}{10}$	32	$\frac{2}{3}$	$\frac{4}{9}$
11	$\frac{2}{5}$	$\frac{1}{10}$	33	$\frac{2}{3}$	$\frac{1}{12}$
12	$\frac{2}{5}$	$\frac{3}{10}$	34	$\frac{2}{3}$	$\frac{5}{12}$
13	$\frac{3}{5}$	$\frac{3}{10}$	35	$\frac{2}{3}$	$\frac{11}{12}$
14	$\frac{3}{5}$	$\frac{7}{10}$	36	$\frac{2}{3}$	$\frac{7}{12}$
15	$\frac{4}{5}$	$\frac{1}{10}$	37	$\frac{3}{4}$	$\frac{1}{8}$
16	$\frac{4}{5}$	$\frac{9}{10}$	38	$\frac{3}{4}$	$\frac{1}{8}$
17	$\frac{1}{3}$	$\frac{1}{9}$	39	$\frac{5}{6}$	$\frac{7}{12}$
18	$\frac{1}{3}$	$\frac{2}{9}$	40	$\frac{5}{6}$	$\frac{5}{12}$
19	$\frac{1}{3}$	$\frac{4}{9}$	41	$\frac{6}{7}$	$\frac{38}{42}$
20	$\frac{1}{3}$	$\frac{8}{9}$	42	$\frac{7}{8}$	$\frac{62}{72}$
21	$\frac{1}{3}$	$\frac{1}{12}$	43	$\frac{49}{54}$	$\frac{8}{9}$
22	$\frac{1}{3}$	$\frac{5}{12}$	44	$\frac{67}{72}$	$\frac{11}{12}$

B
 Improvement \# Correct

1	$\frac{1}{2}$	$\frac{1}{6}$	23	$\frac{1}{4}$	$\frac{5}{8}$
2	$\frac{1}{2}$	$\frac{5}{6}$	24	$\frac{1}{4}$	$\frac{7}{8}$
3	$\frac{1}{2}$	$\frac{1}{8}$	25	$\frac{1}{4}$	$\frac{1}{12}$
4	$\frac{1}{2}$	$\frac{3}{8}$	26	$\frac{1}{4}$	$\frac{5}{12}$
5	$\frac{1}{2}$	$\frac{7}{10}$	27	$\frac{1}{6}$	$\frac{1}{12}$
6	$\frac{1}{2}$	$\frac{9}{10}$	28	$\frac{1}{6}$	$\frac{5}{12}$
7	$\frac{1}{2}$	$\frac{1}{12}$	29	$\frac{2}{3}$	$\frac{1}{9}$
8	$\frac{1}{2}$	$\frac{7}{12}$	30	$\frac{2}{3}$	$\frac{7}{9}$
9	$\frac{1}{5}$	$\frac{1}{10}$	31	$\frac{2}{3}$	$\frac{5}{9}$
10	$\frac{1}{5}$	$\frac{3}{10}$	32	$\frac{2}{3}$	$\frac{8}{9}$
11	$\frac{2}{5}$	$\frac{7}{10}$	33	$\frac{3}{4}$	$\frac{1}{2}$
12	$\frac{2}{5}$	$\frac{9}{10}$	34	$\frac{3}{4}$	$\frac{5}{12}$
13	$\frac{3}{5}$	$\frac{1}{10}$	35	$\frac{3}{4}$	$\frac{11}{12}$
14	$\frac{3}{5}$	$\frac{9}{10}$	36	$\frac{3}{4}$	$\frac{7}{12}$
15	$\frac{4}{5}$	$\frac{3}{10}$	37	$\frac{5}{6}$	$\frac{1}{12}$
16	$\frac{4}{5}$	$\frac{7}{10}$	38	$\frac{5}{6}$	$\frac{11}{12}$
17	$\frac{1}{3}$	$\frac{1}{6}$	39	$\frac{3}{4}$	$\frac{5}{8}$
18	$\frac{1}{3}$	$\frac{5}{6}$	40	$\frac{3}{4}$	$\frac{3}{8}$
19	$\frac{1}{3}$	$\frac{5}{9}$	41	$\frac{6}{7}$	$\frac{34}{42}$
20	$\frac{1}{3}$	$\frac{7}{9}$	42	$\frac{7}{8}$	$\frac{64}{72}$
21	$\frac{1}{3}$	$\frac{7}{12}$	43	$\frac{47}{54}$	$\frac{8}{9}$
22	$\frac{1}{3}$	$\frac{11}{12}$	44	$\frac{65}{72}$	$\frac{11}{12}$

Name \qquad Date \qquad

Solve the word problems using the RDW strategy. Show all your work.

1. In a race, the second place finisher crossed the finish line $11 / 3$ minutes after the first place finisher. The third place finisher was $13 / 4$ minutes behind the second place finisher. The third place finisher took 34 $2 / 3$ minutes. How long did the first place finisher take?
2. John used $13 / 4 \mathrm{~kg}$ of salt to melt the ice on his sidewalk. He then used another $34 / 5 \mathrm{~kg}$ on the driveway. If he originally bought 10 kg of salt, how much does he have left?
3. Sinister Stan stole $33 / 4$ oz of slime from Messy Molly, but his evil plans required $63 / 8$ oz of slime. He stole another 2 3/5 oz from Rude Ralph. How much more slime does Sinister Stan need for his evil plan?
4. Gavin went to a book store with $\$ 20$. He spent $93 / 4$ of his money on a book and $34 / 5$ on a poster. What fraction of his money did he have left? Write the answer in dollars and cents.
5. Matt wants to save $21 / 2$ minutes on his 5 K race time. After a month of hard training he managed to lower his overall time from $211 / 5$ minutes to $191 / 4$ minutes. By how many more minutes does Matt need to lower his race time?

Name \qquad Date \qquad

Solve the word problems using the RDW strategy. Show all your work.

Cheryl bought a sandwich for $5 \frac{1}{2}$ dollars and a drink for $\$ 2.60$. If she paid for her meal with a $\$ 10$ bill, how much money did she have left? Write your answer as a fraction and in dollars and cents.

Name \qquad Date \qquad

Solve the word problems using the RDW strategy. Show all your work.

1. A baker buys a 5 lb bag of sugar. She uses $1 \frac{2}{3} \mathrm{lb}$ to make some muffins and $2 \frac{3}{4} \mathrm{lb}$ to make a cake. How much sugar does she have left?
2. A boxer needs to lose $3 \frac{1}{2} \mathrm{~kg}$ in a month to be able to compete as a flyweight. In three weeks, he lowers his weight from 55.5 kg to 53.8 kg . How many kg must the boxer lose in the final week to be able to compete as a flyweight?
3. A construction company builds a new rail line from Town A to Town B. They complete $1 \frac{1}{4}$ miles in their first week of work and $1 \frac{2}{3}$ miles in the second week. If they still have $25 \frac{3}{4}$ left to build, what is the distance from Town A to Town B?
4. A catering company needs 8.75 lb of shrimp for a small party. They buy $3 \frac{2}{3} \mathrm{lb}$ of jumbo shrimp, $2 \frac{5}{8} \mathrm{lb}$ of medium-sized shrimp, and some mini-shrimp. How many pounds of mini-shrimp do they buy?
5. Mark breaks up a 9 -hour drive into 3 segments. He drives $2 \frac{1}{2}$ hours before stopping for lunch. After driving some more, he stops for gas. If the second segment of his drive was $1 \frac{2}{3}$ hours longer than the first segment, how long did he drive after stopping for gas?
