Estimate and then multiply.

| 1 | $29 \times 11 \approx$ |  | 23 | $801 \times 31 \approx$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | $29 \times 21 \approx$ |  | 24 | $803 \times 31 \approx$ |  |
| 3 | $29 \times 31 \approx$ |  | 25 | $703 \times 31 \approx$ |  |
| 4 | $23 \times 12 \approx$ |  | 26 | $43 \times 34 \approx$ |  |
| 5 | $23 \times 22 \approx$ |  | 27 | $53 \times 34 \approx$ |  |
| 6 | $23 \times 32 \approx$ |  | 28 | $53 \times 31 \approx$ |  |
| 7 | $23 \times 42 \approx$ |  | 29 | $53 \times 51 \approx$ |  |
| 8 | $37 \times 13 \approx$ |  | 30 | $93 \times 31 \approx$ |  |
| 9 | $37 \times 23 \approx$ |  | 31 | $913 \times 31 \approx$ |  |
| 10 | $36 \times 24 \approx$ |  | 32 | $73 \times 31 \approx$ |  |
| 11 | $24 \times 36 \approx$ |  | 33 | $723 \times 31 \approx$ |  |
| 12 | $43 \times 11 \approx$ |  | 34 | $78 \times 34 \approx$ |  |
| 13 | $43 \times 21 \approx$ |  | 35 | $798 \times 34 \approx$ |  |
| 14 | $403 \times 21 \approx$ |  | 36 | $62 \times 33 \approx$ |  |
| 15 | $303 \times 21 \approx$ |  | 37 | $642 \times 33 \approx$ |  |
| 16 | $203 \times 21 \approx$ |  | 38 | $374 \times 64 \approx$ |  |
| 17 | $41 \times 11 \approx$ |  | 39 | $64 \times 374 \approx$ |  |
| 18 | $41 \times 21 \approx$ |  | 40 | $740 \times 36 \approx$ |  |
| 19 | $41 \times 31 \approx$ |  | 41 | $750 \times 36 \approx$ |  |
| 20 | $401 \times 31 \approx$ |  | 42 | $65 \times 680 \approx$ |  |
| 21 | $501 \times 31 \approx$ |  | 43 | $849 \times 84 \approx$ |  |
| 22 | $601 \times 31 \approx$ |  | 44 | $85 \times 849 \approx$ |  |

(C) Bill Davidson
$\qquad$

1. Draw an area model and then solve using the standard algorithm. Use arrows to match the partial products from the area model to the partial products of the algorithm.
a. $34 \times 21$

$$
\begin{array}{r}
34 \\
\times \quad 21 \\
\hline
\end{array}
$$

b. $434 \times 21$

434
21
$\times 2$
2. Solve using the standard algorithm.
a. $431 \times 12=$ $\qquad$ b. $123 \times 23=$ $\qquad$ c. $312 \times 32=$ $\qquad$
3. Betty saves $\$ 161$ a month. She saved $\$ 141$ less each month than Jack. How much will Jack save in 2 years?
4. Farmer Brown feeds 12.1 kg of alfalfa to each of his 2 horses daily. How many kilograms of alfalfa will all his horses have eaten after 21 days? Draw an area model to solve.

Name $\qquad$ Date $\qquad$

1. Complete the area model then solve using the standard algorithm.
a. $21 \times 23=$ $\qquad$

21
23
$\times 2$
b. $143 \times 12=$ $\qquad$

143
12
$\times 1$

Name $\qquad$ Date $\qquad$

1. Draw an area model then solve using the standard algorithm. Use arrows to match the partial products from the area model to the partial products in the algorithm.
a. $24 \times 21=$ $\qquad$
b. $242 \times 21=$ $\qquad$

242
$\begin{array}{r} \\ \times 21 \\ \hline\end{array}$
2. Solve using the standard algorithm.
a. $314 \times 22=$ $\qquad$ b. $413 \times 22=$ $\qquad$ c. $213 \times 32=$ $\qquad$
3. A young snake measures 0.23 m long. During the course of his lifetime, he will grow to be 13 times his current length. What will his length be when he's full grown?
4. Zenin earns $\$ 142$ per shift at his new job. During a pay period, he works 12 shifts. What would his pay be for that period?

